Skip to main content

GKD: Semi-supervised Graph Knowledge Distillation for Graph-Independent Inference

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2021 (MICCAI 2021)

Abstract

The increased amount of multi-modal medical data has opened the opportunities to simultaneously process various modalities such as imaging and non-imaging data to gain a comprehensive insight into the disease prediction domain. Recent studies using Graph Convolutional Networks (GCNs) provide novel semi-supervised approaches for integrating heterogeneous modalities while investigating the patients’ associations for disease prediction. However, when the meta-data used for graph construction is not available at inference time (e.g., coming from a distinct population), the conventional methods exhibit poor performance. To address this issue, we propose a novel semi-supervised approach named GKD based on the knowledge distillation. We train a teacher component that employs the label-propagation algorithm besides a deep neural network to benefit from the graph and non-graph modalities only in the training phase. The teacher component embeds all the available information into the soft pseudo-labels. The soft pseudo-labels are then used to train a deep student network for disease prediction of unseen test data for which the graph modality is unavailable. We perform our experiments on two public datasets for diagnosing Autism spectrum disorder, and Alzheimer’s disease, along with a thorough analysis on synthetic multi-modal datasets. According to these experiments, GKD outperforms the previous graph-based deep learning methods in terms of accuracy, AUC, and Macro F1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
eBook
USD 99.00
Price excludes VAT (USA)
Softcover Book
USD 129.99
Price excludes VAT (USA)

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abraham, A., Milham, M.P., Di Martino, A., Craddock, R.C., Samaras, D., Thirion, B., Varoquaux, G.: Deriving reproducible biomarkers from multi-site resting-state data: An autism-based example. Neuroimage 147, 736–745 (2017)

    Article  Google Scholar 

  2. Abrol, A., Fu, Z., Du, Y., Calhoun, V.D.: Multimodal data fusion of deep learning and dynamic functional connectivity features to predict alzheimer’s disease progression. In: 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 4409–4413. IEEE (2019)

    Google Scholar 

  3. Bi, X.a., Cai, R., Wang, Y., Liu, Y.: Effective diagnosis of alzheimer’s disease via multimodal fusion analysis framework. Frontiers Genetics 10, 976 (2019)

    Google Scholar 

  4. Buciluǎ, C., Caruana, R., Niculescu-Mizil, A.: Model compression. In: Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 535–541 (2006)

    Google Scholar 

  5. Cai, Q., Wang, H., Li, Z., Liu, X.: A survey on multimodal data-driven smart healthcare systems: approaches and applications. IEEE Access 7, 133583–133599 (2019)

    Article  Google Scholar 

  6. Craddock, C., et al.: The neuro bureau preprocessing initiative: open sharing of preprocessed neuroimaging data and derivatives. Frontiers in Neuroinformatics 7 (2013)

    Google Scholar 

  7. Defferrard, M., Bresson, X., Vandergheynst, P.: Convolutional neural networks on graphs with fast localized spectral filtering. arXiv preprint arXiv:1606.09375 (2016)

  8. Di Martino, A., Yan, C.G., Li, Q., Denio, E., Castellanos, F.X., Alaerts, K., Anderson, J.S., Assaf, M., Bookheimer, S.Y., Dapretto, M., et al.: The autism brain imaging data exchange: towards a large-scale evaluation of the intrinsic brain architecture in autism. Mol. Psychiatry 19(6), 659–667 (2014)

    Article  Google Scholar 

  9. Du, H., Feng, J., Feng, M.: Zoom in to where it matters: a hierarchical graph based model for mammogram analysis. arXiv preprint arXiv:1912.07517 (2019)

  10. Ghorbani, M., Kazi, A., Baghshah, M.S., Rabiee, H.R., Navab, N.: Ra-gcn: Graph convolutional network for disease prediction problems with imbalanced data. arXiv preprint arXiv:2103.00221 (2021)

  11. Guo, Z., Li, X., Huang, H., Guo, N., Li, Q.: Deep learning-based image segmentation on multimodal medical imaging. IEEE Trans. Radiation Plasma Med. Sci. 3(2), 162–169 (2019)

    Article  Google Scholar 

  12. Guyon, I.: Design of experiments of the nips 2003 variable selection benchmark. In: NIPS 2003Workshop on Feature Extraction and Feature Selection, vol. 253 (2003)

    Google Scholar 

  13. Hinton, G., Vinyals, O., Dean, J.: Distilling the knowledge in a neural network. arXiv preprint arXiv:1503.02531 (2015)

  14. Huang, S.C., Pareek, A., Seyyedi, S., Banerjee, I., Lungren, M.P.: Fusion of medical imaging and electronic health records using deep learning: a systematic review and implementation guidelines. NPJ digital Med. 3(1), 1–9 (2020)

    Article  Google Scholar 

  15. Huang, Y., Chung, A.C.S.: Edge-variational graph convolutional networks for uncertainty-aware disease prediction. In: Martel, A.L., Abolmaesumi, P., Stoyanov, D., Mateus, D., Zuluaga, M.A., Zhou, S.K., Racoceanu, D., Joskowicz, L. (eds.) MICCAI 2020. LNCS, vol. 12267, pp. 562–572. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59728-3_55

    Chapter  Google Scholar 

  16. Kazi, A., Shekarforoush, S., Arvind Krishna, S., Burwinkel, H., Vivar, G., Kortüm, K., Ahmadi, S.-A., Albarqouni, S., Navab, N.: InceptionGCN: receptive field aware graph convolutional network for disease prediction. In: Chung, A.C.S., Gee, J.C., Yushkevich, P.A., Bao, S. (eds.) IPMI 2019. LNCS, vol. 11492, pp. 73–85. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20351-1_6

    Chapter  Google Scholar 

  17. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  18. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:1609.02907 (2016)

  19. Lee, G., Nho, K., Kang, B., Sohn, K.A., Kim, D.: Predicting alzheimer’s disease progression using multi-modal deep learning approach. Sci. Rep. 9(1), 1–12 (2019)

    Google Scholar 

  20. Li, X., Duncan, J.: Braingnn: Interpretable brain graph neural network for fmri analysis. bioRxiv (2020)

    Google Scholar 

  21. Liu, J., Tan, G., Lan, W., Wang, J.: Identification of early mild cognitive impairment using multi-modal data and graph convolutional networks. BMC Bioinformatics 21(6), 1–12 (2020)

    Google Scholar 

  22. Marinescu, R.V., et al.: Tadpole challenge: Prediction of longitudinal evolution in alzheimer’s disease. arXiv preprint arXiv:1805.03909 (2018)

  23. Parisot, S., et al.: Disease prediction using graph convolutional networks: application to autism spectrum disorder and alzheimer’s disease. Med. Image Anal. 48, 117–130 (2018)

    Article  Google Scholar 

  24. Parisot, S., Ktena, S.I., Ferrante, E., Lee, M., Moreno, R.G., Glocker, B., Rueckert, D.: Spectral Graph Convolutions for Population-Based Disease Prediction. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10435, pp. 177–185. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66179-7_21

    Chapter  Google Scholar 

  25. Pedregosa, F., et al.: Scikit-learn: Machine learning in python. J. Mach. Learn. Res.12, 2825–2830 (2011)

    Google Scholar 

  26. Venugopalan, J., Tong, L., Hassanzadeh, H.R., Wang, M.D.: Multimodal deep learning models for early detection of alzheimer’s disease stage. Sci. Rep. 11(1), 1–13 (2021)

    Article  Google Scholar 

  27. Xu, T., Zhang, H., Huang, X., Zhang, S., Metaxas, D.N.: Multimodal deep learning for cervical dysplasia diagnosis. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 115–123. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46723-8_14

    Chapter  Google Scholar 

  28. Yang, H., et al.: Interpretable multimodality embedding of cerebral cortex using attention graph network for identifying bipolar disorder. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11766, pp. 799–807. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32248-9_89

    Chapter  Google Scholar 

  29. Zhang, S., Tong, H., Xu, J., Maciejewski, R.: Graph convolutional networks: a comprehensive review. Comput. Soc. Networks 6(1), 1–23 (2019)

    Article  Google Scholar 

  30. Zhu, X., Ghahramani, Z.: Learning from labeled and unlabeled data with label propagation (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahsa Ghorbani .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 165 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ghorbani, M., Bahrami, M., Kazi, A., Soleymani Baghshah, M., Rabiee, H.R., Navab, N. (2021). GKD: Semi-supervised Graph Knowledge Distillation for Graph-Independent Inference. In: de Bruijne, M., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2021. MICCAI 2021. Lecture Notes in Computer Science(), vol 12905. Springer, Cham. https://doi.org/10.1007/978-3-030-87240-3_68

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87240-3_68

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87239-7

  • Online ISBN: 978-3-030-87240-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics