Skip to main content

Does a Face Mask Protect My Privacy?: Deep Learning to Predict Protected Attributes from Masked Face Images

  • Conference paper
  • First Online:
AI 2021: Advances in Artificial Intelligence (AI 2022)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13151))

Included in the following conference series:

Abstract

Contactless and efficient systems are implemented rapidly to advocate preventive methods in the fight against the COVID-19 pandemic. Despite the positive benefits of such systems, there is potential for exploitation by invading user privacy. In this work, we analyse the privacy invasiveness of face biometric systems by predicting privacy-sensitive soft-biometrics using masked face images. We train and apply a CNN based on the ResNet-50 architecture with 20,003 synthetic masked images and measure the privacy invasiveness. Despite the popular belief of the privacy benefits of wearing a mask among people, we show that there is no significant difference to privacy invasiveness when a mask is worn. In our experiments we were able to accurately predict sex (94.7%), race (83.1%) and age (MAE 6.21 and RMSE 8.33) from masked face images. Our proposed approach can serve as a baseline utility to evaluate the privacy-invasiveness of artificial intelligence systems that make use of privacy-sensitive information. We open-source all contributions for reproducibility and broader use by the research community.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
eBook
USD 89.00
Price excludes VAT (USA)
Softcover Book
USD 119.99
Price excludes VAT (USA)

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://github.com/sachith500/MaskedFaceRepresentation.

References

  1. Ahmed, M.A., Choudhury, R.D., Kashyap, K.: Race estimation with deep networks. J. King Saud Univ.-Comput. Inf. Sci. (2020)

    Google Scholar 

  2. Alonso-Fernandez, F., Diaz, K.H., Ramis, S., Perales, F.J., Bigun, J.: Soft-biometrics estimation in the era of facial masks. In: 2020 International Conference of the Biometrics Special Interest Group (BIOSIG), pp. 1–6 (2020)

    Google Scholar 

  3. Badawi, A.M., Mahfouz, M., Tadross, R., Jantz, R.: Fingerprint-based gender classification. IPCV 6, 41–46 (2006)

    Google Scholar 

  4. Boutros, F., et al.: MFR 2021: masked face recognition competition. In: 2021 IEEE International Joint Conference on Biometrics (IJCB), pp. 1–10. IEEE (2021)

    Google Scholar 

  5. Buckley, O., Nurse, J.R.: The language of biometrics: analysing public perceptions. J. Inf. Secur. Appl. 47, 112–119 (2019). https://doi.org/10.1016/j.jisa.2019.05.001

    Article  Google Scholar 

  6. Cabani, A., Hammoudi, K., Benhabiles, H., Melkemi, M.: MaskedFace-Net - a dataset of correctly/incorrectly masked face images in the context of COVID-19. Smart Health 19(October 2020), 100144 (2021). https://doi.org/10.1016/j.smhl.2020.100144

  7. Carlaw, S.: Impact on biometrics of COVID-19. Biom. Technol. Today 2020(4), 8–9 (2020). https://doi.org/10.1016/S0969-4765(20)30050-3. https://www.sciencedirect.com/science/article/pii/S0969476520300503

  8. Chen, T., Kornblith, S., Norouzi, M., Hinton, G.: A simple framework for contrastive learning of visual representations (2020)

    Google Scholar 

  9. Chen, X., Fan, H., Girshick, R., He, K.: Improved baselines with momentum contrastive learning (2020)

    Google Scholar 

  10. Childers, D.G., Wu, K.: Gender recognition from speech. PART II: fine analysis. J. Acoust. Soc. Am. 90(4), 1841–1856 (1991)

    Google Scholar 

  11. Cubuk, E.D., Zoph, B., Shlens, J., Le, Q.V.: Randaugment: practical automated data augmentation with a reduced search space (2019)

    Google Scholar 

  12. Damer, N., Grebe, J.H., Chen, C., Boutros, F., Kirchbuchner, F., Kuijper, A.: The effect of wearing a mask on face recognition performance: an exploratory study. In: BIOSIG 2020 - Proceedings of the 19th International Conference of the Biometrics Special Interest Group (2020)

    Google Scholar 

  13. Das, A., Dantcheva, A., Bremond, F.: Mitigating bias in gender, age and ethnicity classification: a multi-task convolution neural network approach. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018)

    Google Scholar 

  14. Guo, G., Fu, Y., Huang, T.S., Dyer, C.R.: Locally adjusted robust regression for human age estimation. In: 2008 IEEE Workshop on Applications of Computer Vision, pp. 1–6. IEEE (2008)

    Google Scholar 

  15. Haggag, O., Haggag, S., Grundy, J., Abdelrazek, M.: COVID-19 vs social media apps: does privacy really matter? In: 2021 IEEE/ACM 43rd International Conference on Software Engineering: Software Engineering in Society (ICSE-SEIS), pp. 48–57 (2021). https://doi.org/10.1109/ICSE-SEIS52602.2021.00014

  16. Hariri, W.: Efficient Masked Face Recognition Method during the COVID-19 Pandemic (2021). https://doi.org/10.21203/rs.3.rs-39289/v1. http://arxiv.org/abs/2105.03026

  17. He, K., Fan, H., Wu, Y., Xie, S., Girshick, R.: Momentum contrast for unsupervised visual representation learning (2020)

    Google Scholar 

  18. Kim, J., Choi, J., Yi, J., Turk, M.: Effective representation using ICA for face recognition robust to local distortion and partial occlusion. IEEE Trans. Pattern Anal. Mach. Intell. 27(12), 1977–1981 (2005). https://doi.org/10.1109/TPAMI.2005.242

    Article  Google Scholar 

  19. Ar, M.L.A., Nugraha, Y., Ernesto, A., Kanggrawan, J.I., Suherman, A.L.: A computer vision-based object detection and counting for COVID-19 protocol compliance: a case study of Jakarta. In: 2020 International Conference on ICT for Smart Society (ICISS), vol. CFP2013V-ART, pp. 1–5 (2020). https://doi.org/10.1109/ICISS50791.2020.9307594

  20. Liu, Y.l., Yan, W., Hu, B.: Resistance to facial recognition payment in China: the influence of privacy-related factors. Telecommun. Policy 45(5), 102155 (2021). https://doi.org/10.1016/j.telpol.2021.102155

  21. Loey, M., Manogaran, G., Taha, M.H.N., Khalifa, N.E.M.: A hybrid deep transfer learning model with machine learning methods for face mask detection in the era of the COVID-19 pandemic. Meas.: J. Int. Meas. Confed. 167(May 2020), 108288 (2021). https://doi.org/10.1016/j.measurement.2020.108288. https://doi.org/10.1016/j.measurement.2020.108288

  22. Ngan, M.L., Grother, P.J., Hanaoka, K.K.: Ongoing face recognition vendor test (FRVT) part 6B: face recognition accuracy with face masks using post-COVID-19 algorithms (2020)

    Google Scholar 

  23. Noyes, E., Davis, J.P., Petrov, N., Gray, K.L., Ritchie, K.L.: The effect of face masks and sunglasses on identity and expression recognition with super-recognizers and typical observers. R. Soc. Open Sci. 8(3), 201169 (2021). https://doi.org/10.1098/rsos.201169

  24. Rasnayaka, S., Sim, T.: Who wants continuous authentication on mobile devices? In: 2018 IEEE 9th International Conference on Biometrics Theory, Applications and Systems (BTAS), pp. 1–9 (2018). https://doi.org/10.1109/BTAS.2018.8698599

  25. Rasnayaka, S., Sim, T.: Your tattletale gait privacy invasiveness of IMU gait data. In: 2020 IEEE International Joint Conference on Biometrics (IJCB), pp. 1–10 (2020). https://doi.org/10.1109/IJCB48548.2020.9304922

  26. Savchenko, A.V.: Efficient facial representations for age, gender and identity recognition in organizing photo albums using multi-output convnet. PeerJ Comput. Sci. 5, e197 (2019)

    Google Scholar 

  27. Seneviratne, S., Kasthuriaarachchi, N., Rasnayaka, S.: Multi-dataset benchmarks for masked identification using contrastive representation learning (2021)

    Google Scholar 

  28. Thomas, V., Chawla, N.V., Bowyer, K.W., Flynn, P.J.: Learning to predict gender from iris images. In: 2007 First IEEE International Conference on Biometrics: Theory, Applications, and Systems, pp. 1–5. IEEE (2007)

    Google Scholar 

  29. Wang, Z., et al.: Masked Face Recognition Dataset and Application, pp. 1–3 (2020). http://arxiv.org/abs/2003.09093

  30. Weng, R., Lu, J., Tan, Y.P.: Robust point set matching for partial face recognition. IEEE Trans. Image Process. 25(3), 1163–1176 (2016). https://doi.org/10.1109/TIP.2016.2515987. http://ieeexplore.ieee.org/document/7377089/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sachith Seneviratne .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Seneviratne, S., Kasthuriarachchi, N., Rasnayaka, S., Hettiachchi, D., Shariffdeen, R. (2022). Does a Face Mask Protect My Privacy?: Deep Learning to Predict Protected Attributes from Masked Face Images. In: Long, G., Yu, X., Wang, S. (eds) AI 2021: Advances in Artificial Intelligence. AI 2022. Lecture Notes in Computer Science(), vol 13151. Springer, Cham. https://doi.org/10.1007/978-3-030-97546-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-97546-3_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-97545-6

  • Online ISBN: 978-3-030-97546-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics