Skip to main content

\(\text {H}^2\text {TNE}\): Temporal Heterogeneous Information Network Embedding in Hyperbolic Spaces

  • Conference paper
  • First Online:
The Semantic Web – ISWC 2022 (ISWC 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13489))

Included in the following conference series:

Abstract

Temporal heterogeneous information network (temporal HIN) embedding, aiming to represent various types of nodes of different timestamps into low-dimensional spaces while preserving structural and semantic information, is of vital importance in diverse real-life tasks. Researchers have made great efforts on temporal HIN embedding in Euclidean spaces and got some considerable achievements. However, there is always a fundamental conflict that many real-world networks show hierarchical property and power-law distribution, and are not isometric of Euclidean spaces. Recently, representation learning in hyperbolic spaces has been proved to be valid for data with hierarchical and power-law structure. Inspired by this character, we propose a hyperbolic heterogeneous temporal network embedding (\(\text {H}^2\text {TNE}\)) model for temporal HINs. Specifically, we leverage a temporally and heterogeneously double-constrained random walk strategy to capture the structural and semantic information, and then calculate the embedding by exploiting hyperbolic distance in proximity measurement. Experimental results show that our method has superior performance on temporal link prediction and node classification compared with SOTA models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
eBook
USD 84.99
Price excludes VAT (USA)
Softcover Book
USD 109.99
Price excludes VAT (USA)

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://www.ahschulz.de/enron-email-data/.

  2. 2.

    https://www.aminer.cn/citation.

References

  1. Bian, R., Koh, Y.S., Dobbie, G., Divoli, A.: Network embedding and change modeling in dynamic heterogeneous networks. In: Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 861–864 (2019)

    Google Scholar 

  2. Bronstein, M.M., Bruna, J., LeCun, Y., Szlam, A., Vandergheynst, P.: Geometric deep learning: going beyond euclidean data. IEEE Signal Process. Mag. 34(4), 18–42 (2017)

    Article  Google Scholar 

  3. Chami, I., Ying, Z., Ré, C., Leskovec, J.: Hyperbolic graph convolutional neural networks. Advances in neural information processing systems 32 (2019)

    Google Scholar 

  4. Chen, F., Wang, Y.C., Wang, B., Kuo, C.C.J.: Graph representation learning: a survey. APSIPA Trans. Sig. Inf. Process. 9 (2020)

    Google Scholar 

  5. Chen, H., Perozzi, B., Al-Rfou, R., Skiena, S.: A tutorial on network embeddings. arXiv preprint arXiv:1808.02590 (2018)

  6. Cui, P., Wang, X., Pei, J., Zhu, W.: A survey on network embedding. IEEE Trans. Knowl. Data Eng. 31(5), 833–852 (2018)

    Article  Google Scholar 

  7. Dong, Y., Chawla, N.V., Swami, A.: metapath2vec: Scalable representation learning for heterogeneous networks. In: Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 135–144 (2017)

    Google Scholar 

  8. Fu, X., Zhang, J., Meng, Z., King, I.: Magnn: Metapath aggregated graph neural network for heterogeneous graph embedding. In: Proceedings of the Web Conference 2020, pp. 2331–2341 (2020)

    Google Scholar 

  9. Grover, A., Leskovec, J.: node2vec: scalable feature learning for networks. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 855–864 (2016)

    Google Scholar 

  10. Guo, J., Bai, Q., Lin, Z., Song, C., Yuan, X.: Dynamic heterogeneous network embedding based on non-decreasing temporal random walk. J. Comput. Res. Dev. 58(8), 1624 (2021)

    Google Scholar 

  11. Harper, F.M., Konstan, J.A.: The movielens datasets: history and context. ACM Trans. Interactive Intell. Syst. (TIIS) 5(4), 1–19 (2015)

    Google Scholar 

  12. Huang, H., Shi, R., Zhou, W., Wang, X., Jin, H., Fu, X.: Temporal heterogeneous information network embedding. In: The 30th International Joint Conference on Artificial Intelligence (2021)

    Google Scholar 

  13. Hussein, R., Yang, D., Cudré-Mauroux, P.: Are meta-paths necessary? revisiting heterogeneous graph embeddings. In: Proceedings of the 27th ACM International Conference on Information and Knowledge Management, pp. 437–446 (2018)

    Google Scholar 

  14. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: International Conference on Learning Representations (2017)

    Google Scholar 

  15. Krioukov, D., Papadopoulos, F., Kitsak, M., Vahdat, A., Boguná, M.: Hyperbolic geometry of complex networks. Phys. Rev. E 82(3), 036106 (2010)

    Article  MathSciNet  Google Scholar 

  16. Lee, J.B., Nguyen, G., Rossi, R.A., Ahmed, N.K., Koh, E., Kim, S.: Dynamic node embeddings from edge streams. IEEE Trans. Emerging Top. Comput. Intell. 5(6), 931–946 (2020)

    Google Scholar 

  17. Li, C., Hu, L., Shi, C., Song, G., Lu, Y.: Sequence-aware heterogeneous graph neural collaborative filtering. In: Proceedings of the 2021 SIAM International Conference on Data Mining (SDM), pp. 64–72. SIAM (2021)

    Google Scholar 

  18. Liu, Q., Nickel, M., Kiela, D.: Hyperbolic graph neural networks. Advances in Neural Information Processing Systems 32 (2019)

    Google Scholar 

  19. Lu, Y., Wang, X., Shi, C., Yu, P.S., Ye, Y.: Temporal network embedding with micro-and macro-dynamics. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, pp. 469–478 (2019)

    Google Scholar 

  20. Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. Advances in neural information processing systems 30 (2017)

    Google Scholar 

  21. Nickel, M., Kiela, D.: Learning continuous hierarchies in the lorentz model of hyperbolic geometry. In: International Conference on Machine Learning, pp. 3779–3788. PMLR (2018)

    Google Scholar 

  22. Peng, H., et al..: Dynamic network embedding via incremental skip-gram with negative sampling. Sci. China Inf. Sci. 63(10), 1–19 (2020). https://doi.org/10.1007/s11432-018-9943-9

  23. Peng, H., et al.: Lime: Low-cost incremental learning for dynamic heterogeneous information networks. IEEE Trans. Comput. (2021)

    Google Scholar 

  24. Peng, W., Varanka, T., Mostafa, A., Shi, H., Zhao, G.: Hyperbolic deep neural networks: a survey. IEEE Trans. Pattern Anal. Mach. Intell. (2021)

    Google Scholar 

  25. Perozzi, B., Al-Rfou, R., Skiena, S.: Deepwalk: online learning of social representations. In: Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 701–710 (2014)

    Google Scholar 

  26. Sala, F., De Sa, C., Gu, A., Ré, C.: Representation tradeoffs for hyperbolic embeddings. In: International Conference on Machine Learning, pp. 4460–4469. PMLR (2018)

    Google Scholar 

  27. Sankar, A., Wu, Y., Gou, L., Zhang, W., Yang, H.: Dysat: deep neural representation learning on dynamic graphs via self-attention networks. In: Proceedings of the 13th International Conference on Web Search and Data Mining, pp. 519–527 (2020)

    Google Scholar 

  28. Shi, C., Li, Y., Zhang, J., Sun, Y., Philip, S.Y.: A survey of heterogeneous information network analysis. IEEE Trans. Knowl. Data Eng. 29(1), 17–37 (2016)

    Article  Google Scholar 

  29. Tang, J., Qu, M., Mei, Q.: Pte: Predictive text embedding through large-scale heterogeneous text networks. In: Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1165–1174 (2015)

    Google Scholar 

  30. Tang, J., Qu, M., Wang, M., Zhang, M., Yan, J., Mei, Q.: Line: large-scale information network embedding. In: Proceedings of the 24th International Conference on World Wide Web, pp. 1067–1077 (2015)

    Google Scholar 

  31. Veličković, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: International Conference on Learning Representations (2018)

    Google Scholar 

  32. Wang, X., et al.: Heterogeneous graph attention network. In: The World Wide Web Conference. pp. 2022–2032 (2019)

    Google Scholar 

  33. Wang, X., Zhang, Y., Shi, C.: Hyperbolic heterogeneous information network embedding. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 5337–5344 (2019)

    Google Scholar 

  34. Xu, D., Ruan, C., Körpeoglu, E., Kumar, S., Achan, K.: Inductive representation learning on temporal graphs. In: International Conference on Learning Representations (2020)

    Google Scholar 

  35. Yang, D., Zhang, D., Zheng, V.W., Yu, Z.: Modeling user activity preference by leveraging user spatial temporal characteristics in lbsns. IEEE Trans. Syst. Man Cybern. Syst. 45(1), 129–142 (2014)

    Article  Google Scholar 

  36. Yin, Y., Ji, L.X., Zhang, J.P., Pei, Y.L.: Dhne: network representation learning method for dynamic heterogeneous networks. IEEE Access 7, 134782–134792 (2019)

    Article  Google Scholar 

  37. Zhang, S., Chen, H., Ming, X., Cui, L., Yin, H., Xu, G.: Where are we in embedding spaces? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 2223–2231 (2021)

    Google Scholar 

  38. Zhang, Y., Wang, X., Shi, C., Jiang, X., Ye, Y.F.: Hyperbolic graph attention network. IEEE Trans. Big Data (2021)

    Google Scholar 

  39. Zheng, Y., Shi, C., Cao, X., Li, X., Wu, B.: Entity set expansion with meta path in knowledge graph. In: Kim, J., Shim, K., Cao, L., Lee, J.-G., Lin, X., Moon, Y.-S. (eds.) PAKDD 2017. LNCS (LNAI), vol. 10234, pp. 317–329. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-57454-7_25

    Chapter  Google Scholar 

  40. Zhou, L., Yang, Y., Ren, X., Wu, F., Zhuang, Y.: Dynamic network embedding by modeling triadic closure process. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32 (2018)

    Google Scholar 

Download references

Acknowledgements

This work is supported by the Chinese Scientific and Technical Innovation Project 2030 (2018AAA0102100), National Natural Science Foundation of China (U1936206, U1903128, 62172237) and the Fundamental Research Funds for the Central Universities (No. 63223046).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haiwei Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bai, Q., Guo, J., Zhang, H., Nie, C., Zhang, L., Yuan, X. (2022). \(\text {H}^2\text {TNE}\): Temporal Heterogeneous Information Network Embedding in Hyperbolic Spaces. In: Sattler, U., et al. The Semantic Web – ISWC 2022. ISWC 2022. Lecture Notes in Computer Science, vol 13489. Springer, Cham. https://doi.org/10.1007/978-3-031-19433-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-19433-7_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-19432-0

  • Online ISBN: 978-3-031-19433-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics