Skip to main content
Log in

The equivariant cohomology ring of a cohomogeneity-one action

  • Original Paper
  • Published:
Geometriae Dedicata Aims and scope Submit manuscript

Abstract

We compute the rational Borel equivariant cohomology ring of a cohomogeneity-one action of a compact Lie group.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. The non-equivariant Mayer–Vietoris sequence of the same cover has also long been used to study such spaces [8, 13, 18].

  2. That is, \(H^*_{K^-}\times _{H^*_{H}} H^*_{K^+}< H^*_{K^-}\times H^*_{K^+}\) is the subring of pairs \((x_-,x_+)\) such that \(\rho ^*_{-}(x_-) = \rho ^*_{+}(x_+)\).

  3. To make this account self-contained, the proof of normality is thus. The transitive action of \(K_0\) on \(K_0{/}H_1\) induces a map \({\lambda }:K_0 \longrightarrow {{\,\mathrm{Homeo}\,}}K_0{/}H_1\) whose image, which acts effectively by definition, can only be \(S^1\) itself if \(K_0{/}H_1 \approx S^1\) and \(\mathrm {SO}(3)\) if \(K_0{/}H_1 \approx P^3\) [4, Thm. 1.1]. As \(\ker \lambda \) stabilizes all points, it is in particular contained in \(H_1\). The stabilizer of the coset \(1H_1\in K_0{/}H_1\) under the effective action of \({{\,\mathrm{im }\,}}\lambda \) is \(\lambda (H_1) \cong H_1{/}\ker \lambda \), which must be finite since \({{\,\mathrm{im }\,}}\lambda \) is of rank one, so \(\ker \lambda \) is of finite index in \(H_1\); particularly, its identity component must be \(H_0\). Since \(\ker \lambda \) is normal in \(K_0\) by definition, so also must be \(H_0\).

  4. We note that this is not the only definition used in the literature, and does not agree with the common definition invoking a Cartan subgroup as per Segal [28, Def. 1.1], [5, §IV.4].

References

  1. Alekseevsky, A.V., Alekseevsky, D.V.: Riemannian \(G\)-manifold with one-dimensional orbit space. Ann. Glob. Anal. Geom. 11(3), 197–211 (1993). https://doi.org/10.1007/BF00773366

    Google Scholar 

  2. Besse, A.: Einstein Manifolds. Ergebnisse der Mathematik und ihrer Grenzgebiete, 3. Folge, vol. 10. Springer, Berlin (1987)

    Google Scholar 

  3. Borel, A.: Sur la cohomologie des espaces fibrés principaux et des espaces homogènes de groupes de Lie compacts. Ann. Math. (2) 57(1), 115–207 (1953)

    Article  MathSciNet  Google Scholar 

  4. Bredon, G.E.: On homogeneous cohomology spheres. Ann. Math. 73, 556–565 (1961)

    Article  MathSciNet  Google Scholar 

  5. Bröcker, T., Tom Dieck, T.: Representations of Compact Lie Groups. Graduate Texts in Mathematics, vol. 98. Springer, Berlin (1985)

    Book  Google Scholar 

  6. Carlson, J.D.: The equivariant K-theory of a cohomogeneity-one action (2018). arXiv:1805.00502

  7. Choi, S., Kuroki, S.: Topological classification of torus manifolds which have codimension one extended actions. Algebr. Geom. Top. 11(5), 2655–2679 (2011). arXiv:0906.1335

    Article  MathSciNet  Google Scholar 

  8. Escher, C.M., Ultman, S.K.: Topological structure of candidates for positive curvature. Topol. Appl. 158(1), 38–51 (2011). https://doi.org/10.1016/j.topol.2010.10.001

    Article  MathSciNet  MATH  Google Scholar 

  9. Galaz-García, F., Searle, C.: Cohomogeneity one Alexandrov spaces. Transform. Groups 16(1), 91–107 (2011). arXiv:0910.5207

    Article  MathSciNet  Google Scholar 

  10. Galaz-García, F., Zarei, M.: Cohomogeneity one topological manifolds revisited. Math. Z. (2015). https://doi.org/10.1007/s00209-017-1915-y. arXiv:1503.09068

    Article  MATH  Google Scholar 

  11. Goertsches, O., Mare, A.-L.: Equivariant cohomology of cohomogeneity one actions. Topol. Appl. 167, 36–52 (2014). arXiv:1110.6318

    Article  MathSciNet  Google Scholar 

  12. Goertsches, O., Mare, A.-L.: Equivariant cohomology of cohomogeneity-one actions: the topological case. Topol. Appl. 218, 93–96 (2017). arXiv:1609.07316

    Article  MathSciNet  Google Scholar 

  13. Grove, K., Halperin, S.: Dupin hypersurfaces, group actions and the double mapping cylinder. J. Differ. Geom. 26(3), 429–459 (1987). https://doi.org/10.4310/jdg/1214441486

    Article  MathSciNet  MATH  Google Scholar 

  14. Grove, K., Wilking, B., Ziller, W.: Positively curved cohomogeneity one manifolds and 3-Sasakian geometry. J. Differ. Geom. 78, 33–111 (2008)

    Article  MathSciNet  Google Scholar 

  15. Hatcher, A.: Algebraic Topology. Cambridge Univ. Press, Cambridge (2002)

    MATH  Google Scholar 

  16. Hatcher, A.: Vector bundles and K-theory. Version 2.2, November 2017. http://math.cornell.edu/~hatcher/VBKT/VBpage.html. Accessed 1 Mar 2019

  17. He, C.: Localization of certain odd-dimensional manifolds with torus actions (2016). arXiv:1608.04392

  18. Hoelscher, C.A.: On the homology of low-dimensional cohomogeneity one manifolds. Transform. Groups 15(1), 115–133 (2010)

    Article  MathSciNet  Google Scholar 

  19. Kane, R.: Reflection Groups and Invariant Theory. C. M. S. Books in Mathematics, vol. 5. Springer, Berlin (2001)

    Book  Google Scholar 

  20. Kuroki, S.: Classification of torus manifolds with codimension one extended actions. Transform. Groups 16(2), 481–536 (2011). https://doi.org/10.1007/s00031-011-9136-7

    Article  MathSciNet  MATH  Google Scholar 

  21. May, J.P.: A Concise Course in Algebraic Topology. University of Chicago Press, Chicago (1999)

    MATH  Google Scholar 

  22. Mimura, M., Toda, H.: Topology of Lie Groups, I and II. Translations of Mathematical Monographs, vol. 91. Amer. Math. Soc., Providence (2000)

    Google Scholar 

  23. Mostert, P.S.: On a compact Lie group acting on a manifold. Ann. Math. 65(3), 447–455 (1957)

    Article  MathSciNet  Google Scholar 

  24. Mostert, P.S.: Errata: On a compact Lie group acting on a manifold. Ann. Math. 66(3), 589 (1957)

    Article  MathSciNet  Google Scholar 

  25. Palais, R., Terng, C.-L.: A general theory of canonical forms. Trans. Am. Math. Soc. 300, 771–789 (1987)

    Article  MathSciNet  Google Scholar 

  26. Püttmann, T.: Cohomogeneity one manifolds and selfmaps of nontrivial degree. Transform. Groups 14, 225–247 (2009). https://doi.org/10.1007/s00031-008-9037-6. arXiv:0710.3770

    Article  MathSciNet  MATH  Google Scholar 

  27. Samelson, H.: Beiträge zur Topologie der Gruppen-Mannigfaltigkeiten. Ann. Math. 42(1), 1091–1137 (1941)

    Article  MathSciNet  Google Scholar 

  28. Segal, G.: The representation-ring of a compact Lie group. Publ. Math. Inst. Hautes Études Sci. 34, 113–128 (1968)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the referee for careful proofreading, for suggesting a reference, and for making an important correction to their statement of Theorem 3.2. The first author would like to thank Omar Antolín Camarena for helpful conversations and the National Center for Theoretical Sciences (Taiwan) for its hospitality during a phase of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Augustin-Liviu Mare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carlson, J.D., Goertsches, O., He, C. et al. The equivariant cohomology ring of a cohomogeneity-one action. Geom Dedicata 203, 205–223 (2019). https://doi.org/10.1007/s10711-019-00434-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10711-019-00434-4

Keywords

Navigation